4 research outputs found

    An integrated clustering analysis framework for heterogeneous data

    Get PDF
    Big data is a growing area of research with some important research challenges that motivate our work. We focus on one such challenge, the variety aspect. First, we introduce our problem by defining heterogeneous data as data about objects that are described by different data types, e.g., structured data, text, time-series, images, etc. Through our work we use five datasets for experimentation: a real dataset of prostate cancer data and four synthetic dataset that we have created and made them publicly available. Each dataset covers different combinations of data types that are used to describe objects. Our strategy for clustering is based on fusion approaches. We compare intermediate and late fusion schemes. We propose an intermediary fusion approach, Similarity Matrix Fusion (SMF), where the integration process takes place at the level of calculating similarities. SMF produces a single distance fusion matrix and two uncertainty expression matrices. We then propose a clustering algorithm, Hk-medoids, a modified version of the standard k-medoids algorithm that utilises uncertainty calculations to improve on the clustering performance. We evaluate our results by comparing them to clustering produced using individual elements and show that the fusion approach produces equal or significantly better results. Also, we show that there are advantages in utilising the uncertainty information as Hkmedoids does. In addition, from a theoretical point of view, our proposed Hk-medoids algorithm has less computation complexity than the popular PAM implementation of the k-medoids algorithm. Then, we employed late fusion that aggregates the results of clustering by individual elements by combining cluster labels using an object co-occurrence matrix technique. The final cluster is then derived by a hierarchical clustering algorithm. We show that intermediate fusion for clustering of heterogeneous data is a feasible and efficient approach using our proposed Hk-medoids algorithm

    An adaptive version of k-medoids to deal with the uncertainty in clustering heterogeneous data using an intermediary fusion approach

    Get PDF
    This paper introduces Hk-medoids, a modified version of the standard k-medoids algorithm. The modification extends the algorithm for the problem of clustering complex heterogeneous objects that are described by a diversity of data types, e.g. text, images, structured data and time series. We first proposed an intermediary fusion approach to calculate fused similarities between objects, SMF, taking into account the similarities between the component elements of the objects using appropriate similarity measures. The fused approach entails uncertainty for incomplete objects or for objects which have diverging distances according to the different component. Our implementation of Hk-medoids proposed here works with the fused distances and deals with the uncertainty in the fusion process. We experimentally evaluate the potential of our proposed algorithm using five datasets with different combinations of data types that define the objects. Our results show the feasibility of the our algorithm, and also they show a performance enhancement when comparing to the application of the original SMF approach in combination with a standard k-medoids that does not take uncertainty into account. In addition, from a theoretical point of view, our proposed algorithm has lower computation complexity than the popular PAM implementation

    A Fusion Approach to Computing Distance for Heterogeneous Data

    No full text
    In this paper, we introduce heterogeneous data as data about objects that are described by different data types, for example, structured data, text, time series, images etc. We provide an initial definition of a heterogeneous object using some basic data types, namely structured and time series data, and make the definition extensible to allow for the introduction of further data types and complexity in our objects. There is currently a lack of methods to analyse and, in particular, to cluster such data. We then propose an intermediate fusion approach to calculate distance between objects in such datasets. Our approach deals with uncertainty in the distance calculation and provides a representation of it that can later be used to fine tune clustering algorithms. We provide some initial examples of our approach using a real dataset of prostate cancer patients including visualisation of both distances and uncertainty. Our approach is a preliminary step in the clustering of such heterogeneous objects as the distance between objects produced by the fusion approach can be fed to any standard clustering algorithm. Although further experimental evaluation will be required to fully validate the Fused Distance Matrix approach, this paper presents the concept through an example and shows its feasibility. The approach is extensible to other problems with objects represented by different data types, e.g. text or images

    Applying Clustering Analysis to Heterogeneous Data Using Similarity Matrix Fusion (SMF)

    No full text
    We define a heterogeneous dataset as a set of complex objects, that is, those defined by several data types including structured data, images, free text or time series. We envisage this could be extensible to other data types. There are currently research gaps in how to deal with such complex data. In our previous work, we have proposed an intermediary fusion approach called SMF which produces a pairwise matrix of distances between heterogeneous objects by fusing the distances between the individual data types. More precisely, SMF aggregates partial distances that we compute separately from each data type, taking into consideration uncertainty. Consequently, a single fused distance matrix is produced that can be used to produce a clustering using a standard clustering algorithm. In this paper we extend the practical work by evaluating SMF using the k-means algorithm to cluster heterogeneous data. We used a dataset of prostate cancer patients where objects are described by two basic data types, namely: structured and time-series data. We assess the results of clustering using external validation on multiple possible classifications of our patients. The result shows that the SMF approach can improved the clustering configuration when compared with clustering on an individual data type
    corecore